Skip to main content
Version: Latest

Running When Offline

Rancher Desktop can be run when offline, aka in air-gapped mode. This document covers requirements and possible problems when running in air-gapped mode.

A Note for Windows users​

This document uses Powershell syntax for environment variables. If you're using the Command shell instead, where you see an environment variable reference of $env:FOO, please substitute it with %FOO%.

Network-Sensitive areas​

There are two areas where Rancher Desktop assumes network availability and will recover in an air-gapped situation:

  1. Pulling Kubernetes k3s images into the k3s cache directory

  2. Using kuberlr as a version-aware wrapper around kubectl, so the client never differs from the Kubernetes server by more than one minor version.

Existing Deployments​

If Rancher Desktop has been installed on a machine initially with networked access, it can be run subsequently on that machine after network connectivity has been turned off. The main difference in core functionality is that the list of versions of Kubernetes available in drop-down menus is limited to those versions that have actually been downloaded and stored in the cache.

There is a problem using the kubectl client, because of the kuberlr wrapper (Windows users should add the .exe suffix to each executable utility file).

In this case, we're discussing a system that was initialized when connected to the internet, but we're about to take the machine offline for future use.

Suppose there are three versions of k3s in the rancher-desktop cache.

  • 1.29.7

  • 1.24.3

  • 1.21.14

But suppose that on this system we only ran kubectl when using versions 1.24.3 and 1.21.14. This means that the ~/.kuberlr/PLATFORM-ARCH/ directory ($env:HOMEDRIVE%\$env:HOMEPATH/.kuberlr/windows-amd64 on Windows) will contain only two files:

  • kubectl1.24.3

  • kubectl1.21.14

If we go offline and use the UI to switch to Kubernetes 1.29.7, when kubectl is run, the system will fail. The problem is that kubectl is an alias for kuberlr, which will try to download kubectl 1.29.7 and install it in the .kuberlr directory, but won't be able to access it.

So in this case, it would be best to prepare a connected system for disconnecting by selecting each available version of Kubernetes currently in the cache, and running kubectl --context rancher-desktop cluster-info to ensure that an appropriate version of the kubectl client is installed.

You could install versioned kubectls manually. This is covered in the next section.

Preparing an Air-Gapped System​

Here we assume you have some kind of removable media which you can populate on an internet-connected system, and then move over to the air-gapped system.

There are two directories that need to be populated in order for Rancher Desktop to function off-line:

The Cache Directory​

To populate a source disk (which we refer to here as %SOURCEDISK%, although it is probably some kind of removable medium like a USB thumb drive), you need the following files:

  • k3s-versions.json -- Rancher Desktop ships with a copy of this file that is up-to-date on the release date of the app. It will update it with new k3s versions as they become available. You can download the latest version from the GitHub repo (see sample commands below), or edit an existing file to add additional k3s versions. If all your offline k3s versions are named in the bundled k3s-versions.json file, then you don't need to include this file at all.
  • Tar archives of Kubernetes K3s images. These are listed at https://github.com/k3s-io/k3s/releases. You'll want to download either the k3s-airgap-images-amd64.tar for AMD/Intel machines, k3s-airgap-images-arm64.tar for M1 machines, or the respective *.tar.zst compressed tarball if you are using k3s v1.26.1 and above. Finally you'll need to download the k3s executable for the selected version. For example, the following commands will let you work with K3s v1.24.3 build 1 offline:
cd .../CACHE
wget https://raw.githubusercontent.com/rancher-sandbox/rancher-desktop/refs/heads/main/resources/k3s-versions.json
mkdir v1.24.3+k3s1
cd v1.24.3+k3s1
wget https://github.com/k3s-io/k3s/releases/download/v1.24.3%2Bk3s1/k3s-airgap-images-amd64.tar
wget https://github.com/k3s-io/k3s/releases/download/v1.24.3%2Bk3s1/sha256sum-amd64.txt
wget https://github.com/k3s-io/k3s/releases/download/v1.24.3%2Bk3s1/k3s

On Linux, the cache directory is at ~/.cache/rancher-desktop and the commands to populate it would be

CACHEDIR=~/.cache/rancher-desktop
mkdir -p $CACHEDIR/k3s
cp $SOURCEDISK/k3s-versions.json $CACHEDIR/
cp -r $SOURCEDISK/v<MAJOR>.<MINOR>.<PATCH>+k3s<BUILD> $CACHEDIR/k3s/

The kuberlr Directory​

The location of this directory is more straightforward. On all platforms, it's at HOME/.kuberlr/PLATFORM-ARCH where:

  • HOME is the home directory: usually $env:HOMEDRIVE%\$env:HOMEPATH on Windows, and ~ or $HOME on macOS and Linux.
  • PLATFORM is one of windows, linux, or darwin.
  • ARCH is aarch64 on M1 machines, and amd64 everywhere else.

To populate it, determine which versions of Kubernetes you'll be using, and download the appropriate executables from the internet. These would be in:

https://dl.k8s.io/VERSION/bin/PLATFORM/CPU/kubectl

Where:

  • VERSION will have the form vMAJOR.MINOR.PATCH (like v1.22.1),
  • PLATFORM will be one of darwin, linux, or windows,
  • CPU will arm64 on M1 machines and amd64 everywhere else.

For example, to get a kubectl for Windows that will work with Kubernetes v1.22, this Windows command-shell (not PowerShell) command will put it on the SOURCEDISK:

wget -O %SOURCEDISK/kubectl1.22.1.exe https://dl.k8s.io/v1.22.1/bin/windows/amd64/kubectl.exe
A Note on Versions​

Kubectl clients are guaranteed to work with servers that are running the same MAJOR version and differ in the MINOR version by at most 1. So for example, if your organization is working with Kubernetes versions v1.21.x, v1.22.x, and v1.23.x, for any patch-version of x, you would only need to install kubectl1.22.x in the .kuberlr directory. But if you copy a v1.24.x of Kubernetes into the CACHE directory, you'll need to ensure there's a compatible kubectl in the .kuberlr directory as well (any of v1.23.x, v1.24.x, or v1.25.x would suffice).